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TECHNICAL PAPER 

A STUDY OF PRODUCTION OF MISCIBILITY GAP ALLOYS 
WITH  CONTROLLED  STRUCTURES 

INTRODUCTION 

Miscibility gap alloy  systems  have largely been  neglected in past  years because of processing diffi- 
culties which usually produce  an  inhomogeneous solid state  structure. More than 500 alloy systems  have 
been  identified in which there  is immiscibility to some extent  in  the liquid state [ 1 1 .  As a class these alloys 
have remained  unexplored,  and  they  represent  a sizable gap in our knowledge  and  understanding  of the 
physics of solids. It has been  projected, based on  their elemental content,  that  many immiscible combina- 
tions, if available as homogeneous  alloys, would exhibit desirable physical  properties.  Superconductors, 
bearing materials,  composites,  and  enhanced  thermal  conductors are several of the desirable properties  that 
might  be  obtained by successful processing of miscibility gap materials. 

One of the miscibility gap alloys  studied was the aluminum-bismuth  system,  and its associated 
phase diagram is shown  in  Figure  1 [21. Within the miscibility gap there  are  two  liquids  in  equilibrium  that 
transform below the  monotectic  temperature  into aluminum  and  bismuth.  Thus, the solubility of bismuth 
in aluminum  at  room temperature  is negligible. Another  inherent  problem  with  these alloys is the sedimenta- 
tion effect  resulting  from  liquids having different  densities  and gross density  differences  between the 
resultant solid components.  The  densities  of  aluminum  and  bismuth are 2.70  g/cc  and 9.80 g/cc, respectively. 
The  other  property  that causes difficulty  in processing miscibility gap materials is their wide variation of 
melting points between  components.  The  melting  point of aluminum is 660°C while bismuth is 271.3"C; 
thus,  separation of the  pure  elements during  solidification  results  in  bismuth  remaining  molten  within the 
solid aluminum. 

The  most  obvious  means of controlling  the final solidification product of miscibility gap materials 
is processing in  a low-gravity environment  whereby  sedimentation is substantially  reduced.  One  such 
proposal by  the  authors was selected by NASA Headquarters  for Spacelab Category I11 ground base testing. 
Extensive  studies were performed on several candidate miscibility gap materials. During the course of this 
investigation  a processing technique was discovered and  subsequently  became  a NASA patent [3] .  An 
aluminum-bismuth  alloy was modified with  a  dopant material and directionally solidified under cellular 
growth  conditions to produce a  uniform  dispersion of bismuth  in  aluminum (Fig. 2) [4,5]. This new process 
required high thermal  gradients  and  a small diameter sample (2 mm) to effectively control  the convection 
and  thermal  gradients  in  the  sample.  Two MSFC Discretionary Fund Projects were obtained to further  study 
the process parameters.  These  provided  for baseline studies of D.S. production  of  alloys  that  may  provide 
a significant advantage over prior processes. 

One of the alloys selected for  study was Cu-Nb, a  system that would have commercial  feasibility 
as a  superconductor.  The  phase diagram for Cu-Nb is given in Figure 1. The goal of superconductor fabrica- 
tion is generally to produce  a very long  length of wire in  the  form of a  metal-matrix  composite  consisting 
of a very large number  (approximately  1000) of fine  filaments  (diameters  between 5 and 60 pm) imbedded 
in  a  high-conductivity matrix of OFHC  copper  (but occasionally of aluminum). 

Early  magnets,  which  used single filaments of copper  coated wire, rarely reached  their design cap- 
ability  due to magnetic  instabilities  and  flux  jumps. It was later  shown [6] that if the filament size was 
reduced, the movement of the  flux lines  were  inhibited  and the material was stable. In  order to maintain 



the capability to  carry  a large amount of current,  but also  remain  stable,  composites of many fine  filaments 
were needed in a  stabilizing  matrix.  The  conventional way of doing  this  is to  assemble the required number 
of  copper-clad superconductor rods,  plus  copper  filled  pieces, into a  copper  can  fitted  with nose-cone  and 
tail plug and  suitably  evacuated  in  readiness  for  extrusion.  The  “conventionally” or hydrostatically-extruded 
product is cold  drawn to  rod  on a  drawbench  and  further  cold  drawn to wire  using  a  bullblock  and  a  multidie 
machine in succession.  The output of this process  is  a  multifilamentary  strand  which,  after  insulation,  can 
either be used in  that  form  for  the winding of small  solenoidal  magnets, or can  be assembled with  many 
others of its kind into  a cable  in  order to  enable the  transportation of heavy supercurrents  in large-scale 
applications. 

Recently,  experimenters have attempted to  simplify the  production  by going to  “in  situ”  super- 
conducting wire. In  this process either chill  casting or consumable arc  melting  are used to  produce  a  dendritic 
copper  matrix.  The  niobium  is  uniformly  dispersed  throughout  the  casting.  The  ingot  is  then  mechanically 
reduced to wire form,  this  procedure serving to elongate  the  niobium  and to  force  the particles into  con- 
tinuity.  Tin is later diffused into  the wire to  produce  Nb3Sn.  Some  standard  casting  problems  still  remain 
however. The ingot can contain  porosity  or  areas of macrosegregation  and  impurities. 

The  purpose of this  study was to determine  the  effectiveness  of  the MSFC directional  solidification 
process for  producing  aligned  niobium  in  a  copper  matrix  by  a  one-step  process. 

EXPERIMENTAL  PROCEDURE 

A directional  solidification  system was used to  produce  a  broad  range of temperature  gradients  and 
growth  rates.  The  system  consists  of  a  high  temperature  furnace  with  integral  water-cooled  quench  block 
(Fig. 3). The  2  mm  diameter  sample  remains  stationary while the  furnace  with  the  quench block moves by 
a  threaded  rod  and  gear  system. Using a  test  sample, the  growth  rate was determined to be  equal to  the  rate 
of  furnace  movement.  Temperature  gradients  were  measured using dummy cartridges. 

The Al-Bi-Fe samples  were  prepared by melting  pure (99.999 percent) materials  together  in  air at  a 
temperature  200°C  above  the  liquidus.  The  melt was cast  and  drawn into  the required  2  mm  diameter  wire. 

These  were then solidified at  rates of 0.5 to 21  cm/hr  with  temperature gradients of 150” to  
410°C/cm  and  temperature  gradient (G) to  growth  rate (R) values from 0.7 x 10  to 2.3 x 106”C/sec/cm2 
Figure 2 shows  typical  aligned  rod  and  sphere  structures  in  the Al-Bi-Fe system. 

5 

The Cu-Nb samples were prepared  by weighing the  appropriate  amounts of 99.999 percent  copper 
and  niobium  and  melting  them in argon  between  1600°C  and  1700°C. When required, the  dopant 
0.25wt%Al) was added  at  this stage.  The  resultant slug was then rolled into  the desired wire size for 
processing. After  processing, the samples  were  removed  from the crucibles, then  mounted and  polished 
longitudinally.  The  minor constituent was clearly visible. Areas for cross  sectioning were selected  and 
polished. 

The Cu-Nb system was found  to solidify  with an aligned structure when  0.25%  aluminum was added 
as a  dopant. Figure  4  shows  typical  examples of the processed structure. 

When the  morphology was  well characterized, intact samples 30  mm  to  60 mm  long  were  analyzed 
for  their  superconducting  properties  by  the  University of Alabama,  Huntsville. A  total of 12 specimens  were 
tested.  The  list  of the specimens  and their  compositions  is  shown  in  Table 1. The  detailed  fabrication 
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processes used for preparing  the samples for  superconductivity  measurements  are given in Table 2. The first 
six specimens  were  prepared by Materials and Processes Laboratory, MSFC. The samples  containing  tin, 
8 1CNA47-S and 81CNA7-B,  were  prepared by hot  dipping  into  molten  tin  and diffusing it  at  temperatures 
up to 65OoC, in an attempt to form  the  compound  Nb3Sn, which  has  a  critical temperature (Tc) of 18'K. 
However, no significant effort was made  to  optimize  the  diffusion  and  reaction  parameters  for  forming  the 
compound.  The last six specimens 1: 81 were received from Dr. E. W. Collins, from Battelle Columbus  Labora- 
tory in Uhio. Figure 5  shows  a  typical  structure as received from Battelle. Figure 6  shows the  structure  after 
directional  solidification  in Materials and Processes Laboratory. 

Each  specimen from  Table  1 was tested  by  plotting  the following curve: 

1) The graph of the residual resistivity as a  function of the specimen current  density at 4.3 K. 

2)  The graph of  the  electrical resistivity as a  function  of  the  temperature  at  a  constant  current 
density. 

The  four  probe  technique  of electrical resistivity measurement was used to  ascertain if the specimen 
was superconducting.  A  specimen  holder  and  its  components  are  shown  in Figure 7. The  specimen  holder 
is a small piece  of  IC  board (4 x 2.5 cm).  On  this  board  are  four  elastic, gold-coated probes  which secure the 
regular sized specimens. Thin  specimens  are secured by  solder.  The  two  outer  probes pass a  known  current 
through  the  specimen  by  22 gauge Soldereaze magnet wires. The voltage developed across the  inner  probes 
is then  measured by 28 gauge Soldereaze magnet wires connected to  a  Keithly  148  nanovoltmeter. 

The  distance  between  the  inner  probes is approximately  1.6  cm.  The voltage is proportional  to  the 
electrical resistance of the specimen. The resistivity is found  by  knowing  the dimensions of the specimen. 
For reference  purposes,  the gross cross-sectional areas of the specimens are listed in  Table 1. 

In  order  to measure the  temperature,  a resistance thermometer is also attached  to  the specimen 
holder.  There  are  two  resistance  thermometers being used;  the  Platinum-Resistance-Thermometer  (PRT) 
and the Germanium-ResistanceThermometer (GRT). The  PRT is used  when the  temperature is between 
60K to 300K, below  60K the  GRT is used since the  PRT loses its sensitivity to use at low  temperature. 
In  addition,  a DPDT control  switch is  used to reverse the  direction of the applied current DPDT through 
the specimens. 

RESULTS 

When the  aluminum-bismuth  samples  were solidified with  0.2wt%Fe as a  dopant,  the  bismuth aligned 
as either  rods  or  spheres  in  the  aluminum  matrix.  The  theory  behind  the  phenomena of the  dopant was 
presented in the earlier paper [4] .  The  breakdown  from  rods into spheres  must  be  concurrent  with  the 
solidification process since extensive  heat  treatment  subsequent to  processing, does  not  produce similar 
alignment. If spheres  do finally form,  they  are irregularly spaced with varying sizes. The  occurrence  of  the 
regular spacing of the spheres  during  solidification, is being discussed in  another paper. 

I t  was also necessary to  add  a  dopant (0.25wt%Al) to  the copper-niobium  system  in  order to  obtain 
alignment.  The  niobium  adopted  one  of  three  morphologies  during processing; aligned rods,  rosettes,  and 
cuboidal  rods (Fig. 6) .  
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Selected specimens  were  analyzed for  distribution  of  the  alloy  elements  by  three  instruments (elec- 
tron  microprobe  at Georgia  Tech, Kevex at  the Space Science Laboratory,  and EDAX at  the Materials and 
Processes Laboratory  of MSFC). Specimen 8 1 CNA42,  shown in  Figure 8, was analyzed  by microprobe  in  the 
representative areas indicated  on  the  photomicrograph  and  results  are given in Table 3. The  aluminum has 
segregated mostly in the  niobium  rosettes  with less than  the  nominal  0.25  percent  of  the  copper  matrix. 
The very low percent of niobium  found  in  the small rods is contrary  to  their  etching behavior and, as  will be 
seen  later in analyses by Kevex and EDAX, is believed to  be  caused by  the  probe beam being much larger 
than  the  rods  and analyzing mostly  the  copper  matrix. 

Specimen 8 1CNA41 was analzyed  by EDAX in the areas shown in Figure 9. This  specimen was  given 
a  deeper  etch  than  for  81CNA42 to reduce  the  matrix  effects  around  the rods. Results of  the analysis are 
given in Table 4. 

The segregation of aluminum  in  the larger stringer agrees with  results  obtained  with  the  microprobe 
on  the  rosettes,  and  the higher niobium  content in the small rods  shows the  effect of  deeper  etching.  The 
reason  for not  detecting  aluminum in the small rods is not known. 

The Kevex analyses of specimen 8 1CNA52 is shown  in  the  spectra of Figure 10. The  spectra of the 
fine  rods agrees approximately  with  the EDAX analyses. (The  presence of chromium  in  the  spectra  probably 
results  from  internal  components of the SEM.) The coarse rods, of two  types (right angle and  rectangular) 
as shown in Figure 6, consist of nearly 100  percent  niobium  for  the  right angle type  and  predominantly 
niobium  for  the  rectangular.  No  aluminum was detected in any of the  spectra.  Source  of  the silicon is not 
known. 

Figure 11 shows the electrical resistivity as a  function  of  temperature  for  the NASA specimens. 
According to  the  calibration  specimen C-5 (99.5  percent  pure  copper),  the resistivity varies form 0.65 to  
0.72  micro  ohm-cm  when  the  temperature increases from 4.3K to 14K.  The specimen  which has the largest 
transition  temperature range (AT) is 81NbBr53  (from  5.5K to 14.5K); while NbBr169 has the smallest 
transition  temperature range, (the smaller the  transition  temperature range the higher the  slope of the 
transition curve). Notice  that  at 4.3K,  specimen  81CNA47-S  does not give a zero-resistivity value, i.e., a 
magnitude  of  0.5  micro  ohm-cm is recorded.  In  addition,  it has the highest normal resistivity value for  the 
set. 

The electrical resistivity versus temperature  for  the  Battelle  specimens is given in Figure 12. Specimen 
A-4 has the highest normal resistivity value when the sample is at  9.4K. All specimens  shown in  this figure 
have a  temperature range from  7.3K to 9.7K. 

Table 5 is a list of the  resistivity-temperature  characteristics  of all 12  test specimens. It includes  the 
specimen’s current  density using the  normal resistivity, and  the  temperature range at which the  transition  of 
resistivity value takes place as a  function of temperature.  The  resistivity-current  characteristics  for  the twelve 
specimens  are given in  Table 6. 

Figure  13 shows the current-voltage relations at  4.3K  for  sample C-5, 81NbBr53,  81CNA51,  and 
81CNA1700.  Sample C-5 represents  copper  (99.5  percent  pure)  which has a linear current-voltage relation. 
This results in  a  constant value of resistivity as a  function of  specimen current  shown  in  Figure  14.  The 
resistivity value for  copper  fluctuates slightly around  70  nano  ohm-cm, which is acceptable  for  reference 
purpose [ 71. Above  the C-5 curve is the current-voltage relation  for  specimen  81NbBr53. This specimen 
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produces  a  nonlinear I-V relation  which  has  a  sharp decreasing slope  from  0.5 to 2.5 A  current range. From 
2.5 to 5.5  A, the I-V slope is constant;  this results in a  linear  resistivity-current  relation as shown  in  Figure 
15, below 0.8 A. The R-I curve seems to exhibit  some “negative resistivity” values in small magnitudes. 
Sample 8 1CNA5 1  has  almost  an  identical I-V curve as of sample 8 1NbBr53,  however; 8 1CNA5 1’s curve 
has slightly higher value in resistance. The  results in resistivity-current  relation  are  shown in Figure 16; 
note  that  the sample tends to have small “negative resistivity” values when the sample current is below 0.25 
A. Sample 81CNA1700 (Fig. 17) shows  a very interesting  current-voltage  relation:  from  0.5 to 7.5 A, the 
voltage increase is very small, but  when  the  current is greater than 7.5 A, the voltage increases rapidly.  The 
current-voltage  relations for samples A-3, A-4, B-1 , and  NbBr 169  are  shown  in  Figure  18.  Note  that  for 
current ranges from 0 to 8.5  A,  the specimens’ voltage responses are small in magnitude  (about  3.5 micro- 
volt  maximum). Samples A-3, A-4, and B-1 show  very  interesting I-V characteristics; i.e., when the positive 
current is applied the samples  produced  a small (pico-ohm-cm) negative voltage response. The  phenomena 
also occurs  for sample NbBr 169,  and samples A-5 and B-4 (Fig. 19a,b,c).  This  results  in the “negative 
resistivity”-current  characteristics as shown  in  Figures  19b  and  19c  for A-5 and €3-4, respectively. For sample 
A-5 the positive resistivity  exists  when the  current is greater than 4.8 A. For sample B-4 the positive 
resistivity requires that  current applied has to be  greater  than  2.6 A. 

Figure 20 shows  current-voltage  relations for sample 8 1 CNA47-B and 8 1 CNA47-S. A small negative 
voltage response  exists for 81CNA47-BY but  this  effect  could be observed in  detail by using the  plot of 
resistivity versus current as shown  in  Figure  2 1. However, for sample  7 1CNA47-S (Fig. 22) ,  “negative resis- 
tivity”  did not exist even with  a small positive  applied current. 

From  the R-I relations, we may  conclude  that  most of the tested specimens exhibit  critical  currents 
at 4.3K. Sample 8 lCNAl700 shows  a  sharply  defined value of critical  current,  however, its  normal resistivity 
value has not been recorded.  Specimens A-3, A-4, and B-1 did not exhibit  critical  current at 4.3K.  Their 
maximum  applied current was 8.5 A. Higher currents  are required so that these  specimens  would  show  their 
critical  current at 4.3K. This  means that  the critical current densities  for A-3, A-4, and B-1 should be very 
high, since these  specimens have small cross-sectional areas. Specimen 8 1CNA47-S has a small but measurable 
resistivity at 4.3K, even with very small value of applied  current. However, this  specimen also has  the normal 
resistivity characteristics  when the applied  current of 1  A is reached. 

As mentioned  earlier, when a positive current is applied to some of the specimens, it produced  a 
negative voltage response. This negative effect  has not been noticed  in  literature. This negative resistivity 
might be related to several possibilities; the  superconductive  tunnelling  effect [ 91 , or Josephson’s tunnelling 
effect [ 101 , or  the  normal  electron tunnelling effect, since all tested  specimens  are  composite  superconduc- 
tors, e.g., filaments of niobium wires are grown in copper matrices. (Tunnelling  effects  may  result  from  a 
system of two  superconductors  with  a  thin  insulator [ l  13).  A less esoteric  cause might be  thermal  emf., 
heating  effect by the applied current,  or reliability on  the measurement  recorded  by the experiment 
apparatus. 

The  ohmic  heating  produced  sample  thermal  profile is invariant [ 121 with respect to current direc- 
tion  and,  thus, is readily subtracted  on  current reversal. On the  other  hand,  this “negative resistance”  is 
possible due to Peltier junction heating [ 10,131.  These  resulting  thermal  gradients  would also change direc- 
tion  upon  current reversal and,  thus, would become  a  non-subtractable-error (Seebeck voltage) in  the bulk 
resistance. Although  Peltier  heating  increases  linearly  with current,  it is apparently  overwhelmed  by the 
greater rate  at which the  current drives the sample  normal  through the  superconducting  transition  [equa- 
tion (l)]  . Typically,  a pure  element  sample  Peltier  heating  is  only a few tenths of a  microwatt,  thus,  generat- 
ing  a Seebeck voltage of  only a  few tenths of a  nano-volt. However, upon alloying, the cryogenic  Seebeck 
coefficients SA easily increase  by one  or  two  orders of magnitude.  The  current  density  (I/A)  would  increase 
locally in  the  superconducting  filament region. The  alloying  could decrease the  thermal  conductivity (K) 
by  one  or  two  orders of magnitude (neglecting the K of the He medium). In  equation  (1): 
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Since  the  equation is quadratic  in S, a six or seven order of  magnitude increase in V (into  the micro-volt 
range), although  unlikely, is not impossible. T is the  absolute  temperature  and L the sample  length. SA and 
SB  are  the Seebeck  coefficients  of  the  sample  and wires (Cu), respectively. The  apparent resistivity, pa(T), 
is given  as the  sum of the  true resistivity, p(T),  and  the  error  (Seebeck)  term. 

The following improvements (all unsuccessful) were  made to  identify  the “negative resistance” 
voltage source: 

1)  Enhancing  the  interelectrode  isolation resistance from lo4 ohms to  about  100 Mohms by 
replacing the  magnet wires (leads) with  untwisted magnet wires. 

2) Uncoiling the  current wire coil near the sample to prevent magneto-resistance, 

3)  Installing a  current reversing switch. 

4) Calibrating the  nanovoltmeter  with  a  nanovolt source. 

5 )  Increasing the sample depth  under L. He to six inches. 

6) Replacing the  current  supply  with  a wet cell (automobile)  for  better  isolation. 

7) Using two  continuous  synchronized  strip  chart  recorders to  monitor sample voltage and  current. 

Future researchers may wish to use a  Faraday cage room,  interchange  nanovoltmeter,  or use a  SQUID 
voltmeter. 

All in all  we are 80 percent  confident  that  the negative voltage is real. We are 30 percent  confident 
that  it is Seebeck  related.  Our  confidence  that  it is Peltier related is only 10 percent, however. 

CONCLUSIONS 

1) A negative response to a  certain positive range of current  exists  for nine of  the twelve specimens 
tested. Battelle’s specimens  show  a larger current range for  this  effect. It is not  yet  known if this is a  real 
effect,  therefore,  the  part  of  the curves that  represent  the negative resistance  are to be  taken as tentative 
rather  than final. 
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2) NASA's specimens have higher  normal  resistivity values when  transition  temperatures  are 
reached. Battelle's specimens  have much smaller normal-resistivity value  when the  temperature (critical) is 
reached. 

3) Critical  transition  temperature  range  is large for NASA specimens  (vary from 4.3K to 14.5K). 
This  could  be  because of the presence  of several phases, each with  its  own  transition  temperature.  For 
example,  the samples  containing  tin,  show  transitions  reaching  down  toward 4"K, the  tin  transition  tem- 
perature. In the case of  81NbBr53,  the  transition  stretches  upward to 14.S°K, near the  transition  tempera- 
ture for  the Nb3Sn compound. Battelle's specimens have smaller  critical  transition  temperature  range (vary 
from 7.2K minimum to 9.4K  maximum). 

4) The  sample  (81NbBr53)  which was compacted as niobium  and  bronze  powders  and  then direc- 
tionally  solidified,  showed  the  highest  transition  temperature  and  the  widest  transition range. It also  had 
the highest  critical  current  of  the  directionally  solidified samples. This  indicates  that  both stages  (prepara- 
tion  of  the  ingot,  and  its  later processing)  determine the  final  superconducting  properties  of  the  material. 

7 



ATOMIC  PERCENTAGE  BISMUTH 

WEIGHT  PERCENTAGE  BISMUTH 

THE  ALUMINUM-BISMUTH PHASE DIAGRAM 

CHARLES SOHL WEIGHT  PERCENTAGE NIOBIUM 

Figure 1. Aluminum  bismuth  and  copper-niobium phase diagrams. 
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a. Aligned Spheres (200x1 

b. Aligned Rods (200X) 

Figure 2. Aligned rod  and  sphere  structures  on  directionally solidified Al-Bi-Fe. 
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Figure 3. Directional  solidification  furnace  schematic. 
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Longitudinal 

Figure 4. Copper-5% niobium-0.25% aluminum alloy directionally solidified at 12OO0C set  point 
and 1.7 cm/hr (Spec. 81 CNA41)  Waterbury's etchant. 

~ .. ~~~- 

U. 800X 
Transverse 



a. Transverse View (45X) 

b. Longitudinal View (175X) 

Figure 5. Niobium in  bronze  matrix (Cu-lO%Sn),  prepared by  powder  metallurgy,  canned  in  pure 
copper,  extruded  and rolled. (Specimen  NbBr 169 (C)T)  Waterbury's etchant. 
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a. Transverse   V iew  (37 .5X)  

b. Longitudinal  View (180X) 

Figure 6.  NbBr 169 (C)T after  directional  solidification  at  1200°C  and  4.23  cm/hr. 
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SAMPLE HOLDER AND ITS COMPONENTS 

1. Current  Probe 
2 .  Voltage  Probe 
3 .  Sample 
4 .  Resistance  Thermometer 

Figure 7. Specimen  holder  for  superconductivity  measurement. 
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a. 4000X b. 1500X 

C .  10, ooox d. 1ooox 

Figure 8. SEM photomicrographs of aligned  Niobium compound (a, b, and c) and Niobium Dendrite (d). Waterbury’s etchant. 



400X 

Figure 9. Specimen 81CNA42 directionally solidified at 1200°C and 4.23 cm/hr. 
Electron  microprobe  analyses  were made i n   t h e   r e p r e s e n t a t i v e   a r e a s  
ind ica t ed  by the   l e t t e r s .   T ransve r se   Cross   Sec t ion .   Wate rbury ’ s   e t ch .  
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a. 15Kv b.  20Kv 

C .  Rj 

Fine  Rods 

t AI ngle a .  Rectangular 

Coarse  Rods 

Figure 10. Kevex spectra of specimen 7 1CNA52 directionally solidified at 1200°C and 4.39 cm/hr. 



1.2 - 

1.1 - 

1.0 - 

0.9 - 

0.8 - 

0.7 - 

0.6 - 

0.5 - 

0.4 - 

0.3 - 

0.2 - 

0.1 - 

18 

Figure 1 1 .  Electrical  resistivity as a  function of  temperature. 
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Figure 13. Current-voltage characteristics of four testing specimens. 
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Figure 14. Resistivity-current characteristics for sample C-5 (99.9 percent pure copper) (T = 4.3K). 
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Figure  15.  Resistivity-current  characteristics of specimen  81NbBr53.  Note that when the applied  current  is  greater 
than 0.8 A, the sample  shows  positive resistance. 
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Figure 16. Resistivity-current characteristics of specimen 81CNA5 1 .  
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Figure 17. Resistivity-current characteristics for specimen 8 lCNAl700. 
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Figure 18. Current-voltage  characteristics for specimens A-3,  A-4, B-1, and NbBr 169 at T = 4.3K. 
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Figure 19a. Current-voltage characteristics of specimens A-5, B-4, T = 4.3K. 
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Figure 19b. Resistivity-current characteristics for A-5 at 4.3K. 
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Figure 19c. Resistivity-current characteristics of specimen B-4 at 4.3K. 
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Figure 20. Current-voltage characteristics of specimens 8 1CNA47-B and 81CNA47-S at 4.3K. 
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Figure 2 1. Resistivity-current relations of specimen 8 1 CNA47-B at 4.3K. 



RESISTIVITY 
( lo6 OHM-CM) 

1.5 " 

1.4 -- 

I .3 -+ 

0.1 

0.0 " 1  "i 
0.0 0.5 1 .o 1.5  2.0  2.5  3.0  3.5 4.0 4.5  5.0  5.5 6.0 6.5 

CURRENT  (AMP.) 

Figure 22. Resistivity-current relations of sample  81CNA47-S at 4.3K. 



TABLE 1 .  CROSS  SECTIONAL  AREAS AND SPECIMEN  HISTORIES 

Sample  Cross  Sectional 
No. Area ( cm2 ) 

Alloy and Condition 

CNA 1700 0.0353 Cu-5%. As rolled 

NbBr 169 0.0370 Cu-19.5%Nb-8.5'3&n. Powder Met. Alloy 
from  Battelle,  Extruded and cold  rolled. 

81NbBr53 0.043  Same as specimen NbBr 169,  except 
Directionally Solidified 

81CNA 51 0.044 Cu-5%Nb-O.  257&1. Directionally Solidified. 

81CNA47-S 0.011 Cu-5%Nb-O. 25%Al. Directionally  Solidified, 
Cold Rolled and Tin  Diffused. ( 2.4% Sn) 

81CNA47-B  0.047  Cu-5%Nb-O.  25%Al. Directionally Solidified 
and Tin Diffused. ( 3.0'38n) 

A-3 1.6 Cu-Nb Alloy 

A- 4 2.54 x 10-4 CU-Nb Alloy 

A- 5  3.84 x CU-Nb Alloy 

B- 1 0.012 Cu-Nb Alloy 

B-4 5.83 x cu-Nb Alloy 

c-5 0.0353  Copper 99. % 
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TABLE 2. PROCEDURES  FOR  PREPARING  SAMPLES  FOR 
SUPERCONDUCTIVITY  MEASUREMENTS 

CNA-1700; Cu-5%Nb-.25%Al. Alloy was melted at 1700°C. Casting was then 
cold  rolled with intermediate  anneals,  from 0.50  inch to .083  inch  rod. 

NbBr-169; Cu-19.5%Nb-8.5%Sn. Alloy was prepared by  powder  metallurgy 
Niobium and bronze  powders  compacted,  placed in  copper tube and then  was 
extruded to 0.21 inch diameter rod. The  rod  was  further  reduced to .083  inch 
by  cold  rolling. 

81NbRr53; Alloy is same as NbBr-169. It was directionally  solidified  at 
1200 c at a rate of 4.39 c m h r .  

81CNA 51; Cu-5%Nb-O.  25%A1. Sample  was  directionally  solidified  from rod 
of CNA-1700 at 120OoC and growth rate of 4.36 c m h r .  

81CNA47-S;  Cu-5%Nb-O.  25%A1-2.4%Sn & 81CNA47-B; Cu-5%Nb-O.  25%A1-3.O%Sn. 
These  samples  were  directionally  solidified  similar to 81CNA51. Then 81CNA47-S 
was cold rolled to a diameter of .042  inch for a  reduction in  area of 80%. Both 
samples  were hot dipped in pure  tin and sealed in  vapor tubing under a partial 
pressure of argon,  after  examination.  The t in  was diffused into the  samples  by 
heating  initially  at 2OO0C and then  raising  the  temperature to 65OoC. Total  heating 
time was approximately 72 hours. 

A-3,  A-4,  A-5, B-1 and  B-4; Copper-niobium  composites.  These  samples  were 
prepared  at  Battelle  by  co-extruding niobium contained in  a copper  can.  The 
extension  was  then  reduced  by  rolling and drawing  through wire  dies into wires 
from .003 inch to .048  inch in  diameter. 

C-5, Pure  Copper.  This  sample  was  obtained  from  melted and rolled  copper. 
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TABLE 3. MICROPROBE ANALYSIS OF SPECIMEN 81CNA42 

"" ~ __ " . - 

Area c u  

A - Wosettesfr 5.12,  3.26 
B - Small ffRodsff 98.79 
C - Area Between A & E 99.83 
D - Area Between  Small  Precipitates 99.80 

" 

2.54,  2.31 
.17 . 11 
.10 

Nb 

92.16,  94.03 
.06 

.09 
"- 

TABLE 4. EDAX  ANALYSIS OF SPECIMEN 8 1CNA41 

Area 

A - Large  Stringer 
B - Small Rods 
C - Small Rods 
D - Small Rods 
E - Small Rods 

c u  A1 Nb 

7.50 3.33 88.66 
77 0 84 21.66 
77.72 - "- 22.78 
97.39 "" 2.11 
64.25 "" 35.25 

- "- 
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TABLE 5. RESISTIVITY-TEMPERATURE  CHARACTERISTICS  FOR 
TWELVE  TESTED  SPECIMENS 

Sample No. 

NBBR 169 

81CNA1700 

81NBBR 51 

8lNBBR 53 

81CNA47-S 

81CNA47-B 

A-3 

A-4 

A- 5 

B- 1 

B-4 

c - 5  (99.5%CU) 

Current   Densi ty  Transit ion  Temp. 
(A/cm2) Range (K) 

7  5.5 to 9.5 

5.3 

11.4 

2.3 

8.8 

5.3 

62.5 

400 

2604 

8.3 

175 

14.2 

8.5 to 9.3 

4.3 to 8.5 

5.5 to 14.5 

4.3 to 8.0 

4.3 to 9.5 

8.0 to 9.4 

8.2 to 9.3 

7.2 to 9.8 

8.5 to 9.2 

8.0 to 9.0 

NONE 

Normal  
Resistivity 
(Ohm-cm) 

0.45 x 10-6 

0.14 x 10-6 

0.40 x 

8.0 X lom6 

1.1 x 

0.43 X 

0.6 X 

0.86 X 

0.72 X 10-7 

0.29 X 10-7 

0.41 X 10'~ 

NONE 
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TABLE 6. RESISTIVITY-CURRENT  CHARACTERISTICS OF 
THE  TWELVE  SPECIMENS 

Sample No. 

81CNA 1700 

NBBR 169 

81NBBR 51 

8lNBBR  53 

81CNA47-S 

81CNA47-B 

A- 3 

A-4 

A- 5 

B- 1 

B-4 

c - 5  

Critical Current 
(A/cm2) --- 

210 

3.50 

6.37 

19 

None 

4.70 

? ?  

? ?  

125,000 

? ?  

446 0 

None 
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